Dottorato di Ricerca in Fisica

Title: Ultrafast Laser Physics

Lecturers: Giulia Fulvia Mancini

Duration: 20 hours of frontal lectures

CFU: 4

Period: March - May even years, every other year (2022, 2024, ...)

Content: Learning pre-requisites:

A basic (M.Sc.) knowledge of Photonics and Diffraction are recommended

Learning Objectives:

The course will cover fundamental concepts and recent developments in the field of ultrafast laser physics, and it will introduce the basic theory to understand ultrafast (10^{-15} - 10^{-9} s) phenomena in chemistry, biology and condensed matter physics. It has the goal to give also to the non-expert an efficient starting position to enter the field of ultrafast laser physics providing all the detailed derivations. The course will cover fundamental technological and theoretical aspects of: (*i*) Linear pulse propagation and dispersion compensation, (*ii*) Nonlinear pulse propagation and nonlinear optics with ultrashort pulses, (*iii*) Pulse generation, pulse duration measurements

Program and contents:

<u>Principles of femtosecond laser systems</u>

- Overview of laser oscillators and pulse amplification
- Pulse measurement/characterization

Time-resolved methods

- Transient absorption (pump-probe) spectroscopy
- Time-resolved core-level spectroscopies (X-ray absorption, emission, RIXS) using synchrotron and XFEL radiation
- Time-resolved Coherent Diffractive Imaging methods with XFEL and table-top High Harmonic Generation (HHG) sources & Fundamentals of Fourier Optics
- Electron-based methods (scattering, crystallography, microscopy, spectroscopy)

<u>Theory</u>

Linear & Non-linear optics

Expected results:

The student shall be capable of formulating original questions upon reading an article in ultrafast science

Teaching Methods:

- Interactive lectures
- Group activities in the classroom
- Homework

Reference textbooks:

- U. Keller, Ultrafast Lasers A Comprehensive Introduction to Fundamental Principles with Practical Applications, Springer International Publishing, eBook ISBN 978-3-030-82532-4, 2021
- O. Svelto, Principles of Lasers, Springer, New York, ISBN 978-1-4419-1301-2

Learning verification methods:

Oral presentation on a selected topic & discussion on the overall program

Notes This course may be of interest to PhD students in the Schools of Engineering and Physical Chemistry